

TransIT®-LT1 Transfection Reagent

Protocol for MIR 2300, 2304, 2305, 2306

Quick Reference Protocol, MSDS and Certificate of Analysis available at mirusbio.com/2300

INTRODUCTION

TransIT®-LT1 Transfection Reagent is a broad spectrum reagent that provides high efficiency plasmid DNA delivery in many mammalian cell types including primary cells. TransIT-LT1 is a low toxicity, serum-compatible transfection reagent that eliminates the need for any culture medium change. TransIT-LT1 is suitable for both transient and stable transfection and can be used for many applications such as gene expression, viral production, shRNA expression and promoter analysis.

For hard to transfect cell types, Mirus Bio® also recommends TransIT-X2® Dynamic Delivery System: A novel, polymeric system for delivery of plasmid DNA and siRNA For more details, visit www.mirusbio.com.

SPECIFICATIONS

Storage	Store TransIT-LT1 Reagent tightly capped at 4°C. Before each use , warm to room temperature and vortex gently.
Product Guarantee	1 year from the date of purchase, when properly stored and handled.

Warm TransIT-LT1 to room temperature and vortex gently before each use.

MATERIALS

Materials Supplied

TransIT-LT1 Transfection Reagent is supplied in **one** of the following formats.

Product No.	Quantity
MIR 2304	1 × 0.4 ml
MIR 2300	1 × 1.0 ml
MIR 2305	5 × 1.0 ml
MIR 2306	10 × 1.0 ml

Materials required, but not supplied

- Cultured cells
- Appropriate cell culture medium
- Purified plasmid DNA
- Serum-free medium (e.g. Opti-MEM® I Reduced-Serum Medium)
- Sterile tube for transfection complex preparation
- Micropipets
- Reporter assay as required
- *Optional:* Selection antibiotic (e.g., G418 or Hygromycin B) for stable transfection

For Research Use Only.

BEFORE YOU START:

Important Tips for Optimal Plasmid DNA Transfection

Optimize reaction conditions for each cell type to ensure best transfection results. The suggestions below yield high efficiency transfection using *TransIT-LT1* Transfection Reagent. **Table 1** presents recommended starting conditions depending on culture vessel size.

- **Cell density (% confluence) at transfection.** The recommended cell density for most cell types is $\geq 80\%$ confluence. Determine the optimal cell density for each cell type in order to maximize transfection efficiency. Divide the cells 18–24 hours before transfection to ensure that the cells are actively dividing and reach the appropriate cell density at the time of transfection.
- **DNA purity.** Use highly purified, sterile, and contaminant-free DNA for transfection. Plasmid DNA preps that are endotoxin-free and have $A_{260/280}$ absorbance ratio of 1.8–2.0 are desirable. DNA prepared using miniprep kits is not recommended as it might contain high levels of endotoxin. We recommend using MiraCLEAN® Endotoxin Removal Kit (MIR 5900) to remove any traces of endotoxin from your DNA preparation.
- **Ratio of *TransIT-LT1* Reagent to DNA.** Determine the best *TransIT-LT1* Reagent:DNA ratio for each cell type. Start with 3 μ l of *TransIT-LT1* Reagent per 1 μ g of DNA. Vary the concentration of *TransIT-LT1* Reagent from 2–6 μ l per 1 μ g DNA to find the optimal ratio. **Table 1** provides recommended starting conditions based on cell culture vessel size.
- **Complex formation conditions.** Prepare *TransIT-LT1* Reagent:DNA complexes in serum-free growth medium. Mirus recommends Opti-MEM I Reduced-Serum Medium.
- **Cell culture conditions:** Culture cells in the appropriate medium. The *TransIT-LT1* Reagent yields improved efficiencies when transfections are performed in complete growth medium without a post-transfection medium change. There is no need to perform a medium change to remove the transfection complexes.
- **Presence of antibiotics:** Antibiotics will inhibit transfection complex formation and therefore should be excluded from the complex formation step. Transfection complexes can be added to cells grown in complete culture medium containing serum and low levels of antibiotics (0.1–1X final concentration of penicillin/streptomycin mixture).
- **Post-transfection incubation time.** Determine the best incubation time post-transfection for each cell type. The optimal incubation time is generally 24–72 hours, but will vary depending on the goal of the experiment, nature of the plasmid used, and cell doubling time.

Table 1. Recommended starting conditions for DNA transfections with *TransIT-LT1* Transfection Reagent.

Culture vessel	96-well plate	48-well plate	24-well plate	12-well plate	6-well plate	10-cm dish	T75 flask
Surface area	0.35 cm ²	1.0 cm ²	1.9 cm ²	3.8 cm ²	9.6 cm ²	59 cm ²	75 cm ²
Complete growth medium	92 μ l	263 μ l	0.5 ml	1.0 ml	2.5 ml	15.5 ml	19.7 ml
Serum-free medium	9 μ l	26 μ l	50 μ l	100 μ l	250 μ l	1.5 ml	1.9 ml
DNA (1 μ g/ μ l stock)	0.1 μ l	0.26 μ l	0.5 μ l	1 μ l	2.5 μ l	15 μ l	19 μ l
<i>TransIT-LT1</i> Reagent	0.3 μ l	0.78 μ l	1.5 μ l	3 μ l	7.5 μ l	45 μ l	57 μ l

Do not use DNA prepared using miniprep kits for transfection.

Do not use serum or antibiotics in the medium during transfection complex formation.

Surface areas are based on Greiner tissue culture plates and Falcon 10-cm dishes and T75 flasks. All volumes given are per well (or per dish) for a given culture vessel.

If small volumes of *TransIT-LT1* need to be pipetted, dilute the reagent in serum-free medium before each use to avoid pipetting errors. **Do not** store diluted *TransIT-LT1* Reagent.

PLASMID DNA TRANSFECTION PROTOCOL

The following procedure describes how to perform plasmid DNA transfections using *TransIT-LT1* Transfection Reagent in 6-well plates. The surface areas of other culture vessels are different and transfections must be scaled accordingly. Appropriately increase or decrease the amounts of serum free medium, *TransIT-LT1* Reagent, DNA and complete culture medium based on the surface area of the cell culture vessel (please refer to **Table 1** on Page 2).

Transient plasmid DNA transfection protocol per well of a 6-well plate

A. Plate cells

1. Approximately 18–24 hours before transfection, plate cells in 2.5 ml complete growth medium per well in a 6-well plate. Ideally cells should be $\geq 80\%$ confluent prior to transfection.
For adherent cells: Plate cells at a density of $0.8\text{--}3.0 \times 10^5$ cells/ml.
For suspension cells: Plate cells at a density of $2.5\text{--}5.0 \times 10^5$ cells/ml.
2. Incubate cell cultures overnight.

Reverse transfection protocol for high throughput screening available at:
<http://www.mirusbio.com/hts>

B. Prepare *TransIT-LT1* Reagent:DNA complex (Immediately before transfection)

1. Warm *TransIT-LT1* Reagent to room temperature and vortex gently before using.
2. Place 250 μl of Opti-MEM I Reduced-Serum Medium in a sterile tube.
3. Add 2.5 μg (2.5 μl of a 1 $\mu\text{g}/\mu\text{l}$ stock) plasmid DNA.
4. Pipet gently to mix completely.
5. Add 7.5 μl *TransIT-LT1* Reagent to the diluted DNA mixture. Avoid any contact of the *TransIT-LT1* Reagent with the sides of the plastic tube.
6. Pipet gently to mix completely.
7. Incubate at room temperature for 15–30 minutes.

Divide cultured cells 18–24 hours before transfection to ensure active cell division at the time of transfection.

Warm *TransIT-LT1* to room temperature and vortex gently before each use.

While adding *TransIT-LT1* to the diluted DNA mixture, avoid any contact of the reagent with the sides of the plastic tube.

C. Distribute the complexes to cells in complete growth medium

1. Add the *TransIT-LT1* Reagent:DNA complexes (prepared in Step B) drop-wise to different areas of the wells.
2. Gently rock the culture vessel back-and-forth and from side-to-side to evenly distribute the *TransIT-LT1* Reagent:DNA complexes.
3. Incubate for 24–72 hours. It is not necessary to replace the complete growth medium with fresh medium.
4. Harvest cells and assay as required.

TransIT-LT1 is a low-toxicity reagent. There is no need to change culture medium after transfection. If required, perform a medium change at least 4 hours post-transfection.

Note: For generating stable cell transfectants, passage cells 48–72 hours post-transfection in complete growth medium containing appropriate selection antibiotics, such as G418 or Hygromycin B. Maintain selection for 1–2 weeks to allow for selection of cells that have undergone stable integration of DNA.

Transfection complexes, visualized as small particles, are sometimes observed following transfection. The complexes are not toxic to cells and do not impact transfection efficiency or transgene expression.

TROUBLESHOOTING GUIDE

Problem	Solution
LOW PLASMID DNA TRANSFECTION EFFICIENCY	
TransIT-LT1 Reagent was not mixed properly	Warm <i>TransIT-LT1</i> to room temperature and vortex gently before each use.
Suboptimal <i>TransIT-LT1</i> Reagent:DNA ratio	Determine the best <i>TransIT-LT1</i> Reagent:DNA ratio for each cell type. Titrate the <i>TransIT-LT1</i> Reagent from 2–6 µl per 1 µg DNA. Refer to “Before You Start” on Page 2.
Suboptimal DNA concentration	Determine the DNA concentration accurately. Use plasmid DNA preps that have an A _{260/280} absorbance ratio of 1.8–2.0.
Suboptimal DNA concentration	The optimal DNA concentration generally ranges between 1–3 µg/well of a 6-well plate. Start with 2.5 µg/well of a 6-well plate. Consider testing more or less DNA while scaling the amount of <i>TransIT-LT1</i> Transfection Reagent accordingly.
Low-quality plasmid DNA	<p>Use highly purified, sterile, endotoxin and contaminant-free DNA for transfection.</p> <p>We recommend using Mirus Bio’s MiraCLEAN Endotoxin Removal Kit (MIR 5900) for removal of endotoxin from your DNA preparation.</p> <p>Alternatively, use cesium chloride gradient or anion exchange purified DNA which contains levels of endotoxin that do not harm most cells.</p> <p>Do not use DNA prepared using miniprep kits as it might contain high levels of endotoxin.</p>
Inhibitor present during transfection	<p>Serum and antibiotics inhibit transfection complex formation. Prepare <i>TransIT-LT1</i> Reagent:DNA complexes in serum-free growth medium. We recommend Opti-MEMI Reduced-Serum Medium. Once transfection complexes are formed, they can be added directly to cells cultured in complete growth medium containing serum and 0.1–1X antibiotics.</p> <p>Polyanions such as dextran sulfate or heparin can inhibit transfection. Use culture medium that does not contain these polyanions. If necessary, the transfection medium can be replaced with polyanion containing medium 24 hours post transfection.</p>
Incorrect vector sequence	If you do not observe expression of your target insert, verify the sequence of the plasmid DNA.
Transfection incubation time	Determine the optimal transfection incubation time for each cell type and experiment. Test a range of incubation times (e.g. 12–72 hours). The best incubation time is generally 24–48 hours.
Cells not actively dividing at the time of transfection	Divide the culture at least 18–24 hours before transfection to ensure that the cells are actively dividing and reach optimal cell density at time of transfection.
Precipitate formation during transfection complex formation	<p>During complex formation, scale all reagents according to Table 1 on page 2 including serum-free media, <i>TransIT-LT1</i> and plasmid DNA.</p> <p>Precipitation maybe observed when excess DNA is used during complex formation. This may negatively impact transfection efficiency. To avoid precipitation when using high concentrations of DNA, increase the volume of serum-free medium during complex formation by two-fold.</p>

TROUBLESHOOTING GUIDE continued

Problem	Solution
HIGH CELLULAR TOXICITY	
Proper experimental controls were not included	To verify efficient transfection, use <i>TransIT-LT1 Reagent</i> to deliver a positive control such as a luciferase, beta-galactosidase or green fluorescent protein (GFP) encoding plasmid.
Transfection complexes and cells not mixed thoroughly after complex addition	Add <i>TransIT-LT1 Reagent</i> :DNA complexes drop-wise to different areas of the wells containing the cells. Gently rock the dish back-and-forth and from side-to-side to distribute the complexes evenly. Do not swirl or rotate the dish, as this may cause uneven distribution.
Transfection complexes added to cells cultured in serum-free medium	Allow <i>TransIT-LT1 Reagent</i> :DNA complexes to form in serum-free medium, then add these complexes to cells cultured in complete growth medium. The presence of serum in the growth medium improves transfection efficiency and reduces cytotoxicity. No culture medium change is required after the addition of transfection complexes to cells.
Endotoxin-contaminated plasmid DNA	Use highly purified, sterile, endotoxin and contaminant-free DNA for transfection. We recommend using Mirus Bio's MiraCLEAN Endotoxin Removal Kit (MIR 5900) for removal of any traces of endotoxin from your DNA preparation. Alternatively, use cesium chloride gradient or anion exchange purified DNA which contains levels of endotoxin that do not harm most cells.
Expressed target gene is toxic to cells	Do not use DNA prepared using miniprep kits as it might contain high levels of endotoxin. Compare toxicity levels against a cells alone control and cells transfected with an empty vector to assess the cytotoxic effects of the target protein being expressed. If lower levels of target gene expression are desired in your transfection experiments, consider reducing the amount of target plasmid. Maintain the optimal <i>TransIT-LT1</i> :DNA ratio by using carrier DNA such as an empty cloning vector.
Cell density not optimal at time of transfection	Determine the best cell density for each cell type to maximize transfection efficiency. Use this cell density in subsequent experiments to ensure reproducibility. For most cell types, $\geq 80\%$ confluence is recommended at transfection, but use of higher or lower densities may increase cell viability depending on cell type.
Cell morphology has changed	Mycoplasma contamination can alter cell morphology and affect transfection efficiency. Check your cells for Mycoplasma contamination. Use a fresh frozen stock of cells or use appropriate antibiotics to eliminate Mycoplasma. A high or low cell passage number can make cells more sensitive and refractory to transfection. Maintain a similar passage number between experiments to ensure reproducibility.

RELATED PRODUCTS

- Ingenio® Electroporation Solution and Kits
- *Label IT*® Plasmid Delivery Controls
- *Label IT*® Tracker™ Intracellular Nucleic Acid Localization Kits
- MiraCLEAN® Endotoxin Removal Kits
- *TransIT*- X2® Dynamic Delivery System
- *TransIT*®-2020 Transfection Reagent
- *TransIT*-PRO® Transfection Kit
- *TransIT*® Cell Line Specific Transfection Reagents and Kits

For details on the above mentioned products, visit www.mirusbio.com

Reagent Agent®

Reagent Agent® is an online tool designed to help determine the best solution for nucleic acid delivery based on in-house data, customer feedback and citations.

Learn more at:
www.mirusbio.com/ra