

Specification – Certified Reference Material

Certipur® Certified secondary standard reference buffer solution $pH(S)=6.86_5 (25^{\circ}C)$

Accreditation:

Merck KGaA, Darmstadt, Germany is accredited by the German accreditation authority as registered reference material producer (D-RM-15185-01-00) in accordance with ISO 17034.

Product no.: 1.07202.0105

Description of CRM: Certified secondary standard reference buffer solution $pH(S)=6.86_5$ (25°C)

Certified reference material for pH measurement

Expiry date:

Storage: +15°C to +25°C tightly closed in the original container

Composition: Potassium dihydrogen phosphate / di-sodium hydrogen phosphate in water

Formulation in compliance with DIN 19266, IUPAC, NIST, Ph. Eur; USP

Molality: 0.025 mol/kg / 0.025 mol/kg

Temperature [°C]	Specification as pH	Associated uncertainty $U_{CRM}=k\cdot u_{CRM}$ ($k=2$) as pH
5.0	6.941 - 6.961	± 0.008
10.0	6.913 - 6.933	± 0.008
15.0	6.890 - 6.910	± 0.008
20.0	6.871 - 6.891	± 0.008
25.0	6.855 - 6.875	± 0.008
30.0	6.843 - 6.863	± 0.008
37.0	6.832 - 6,852	± 0.008
40.0	6.828 - 6.848	± 0.009
45.0	6.825 - 6.845	± 0.009
50.0	6.824 - 6.844	± 0.009

Metrological traceability:

This certified secondary standard reference material is directly traceable to primary certified reference material potassium dihydrogen phosphate / di-sodium hydrogen

phosphate characterised by PTB-PHOA-xxx/xxxxx/xx and NIST 186 Ix +IIx. PTB: Physikalisch Technische Bundesanstalt, Braunschweig, Germany NIST: National Institute of Standards and Technology, Gaithersburg, USA

Method of analysis: The pH value is directly measured by differential potentiometry with the aid of two

platinum hydrogen electrodes "quasi without transference" according to IUPAC1 recommendations against solutions prepared from primary reference materials charac-

terised by PTB and NIST.

Intended use: This reference material is intended for use as a calibration standard for pH instru-

ments or pH electrodes or as a control sample for measuring the pH value.

Instructions for handling

and correct use:

The pH value strongly depends on the temperature. Therefore it is necessary to keep the temperature constant during the measurement. Details concerning the nature of any hazard and appropriate precautions are provided in the material safe-

ty data sheet.

Health and safety

information:

Please refer to the Safety Data Sheet for detailed information about the nature of

any hazard and appropriate precautions to be taken.

Preparation: This reference material is prepared gravimetrically from potassium dihydrogen

phosphate, di-sodium hydrogen phosphate and high purity water. The formulation

is compliant to DIN 19266, IUPAC1, NIST2, Ph. Eur. chapter 2.2.3. and USP

chapter<791>.

Associated uncertainty:

The expanded uncertainty U_{CRM} is calculated as $U_{CRM} = k \cdot u_{CRM}$, where k=2 is the coverage factor for a 95% coverage probability and u_{CRM} is the combined standard uncertainty in accordance to ISO 17034.

The combined uncertainty u_{CRM} is derived from combination of the squared uncertainty contributions:

$$\mathbf{u}_{CRM} = \sqrt{\mathbf{u}^2 \text{Characterisation} + \mathbf{u}^2 \text{Homogeneity} + \mathbf{u}^2 \text{Stability}}$$

is the uncertainty in accordance with DIN EN ISO/IEC 17025 which includes e.g. Ucharacterisation:

contributions of the primary reference material and the measuring system.

Uhomogeneity: is the between-bottle variation in accordance with ISO 17034. The assessment

of homogeneity is performed by analysis of a representative number of

systematically chosen sample units.

is the uncertainty obtained from short-term and long-term stability in accordance Ustability:

with ISO 17034. The stability studies are the basis for the quantification of the

expiry date of this reference material for the unopened bottle.

Detailed information is provided by the certificates and the certification report on our website.

The vibrant M, Supelco, Certipur and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates.

Detailed information on trademarks is available via publicly accessible resources.

© 2023 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada.

¹ R.P. Buck, et al.: The Measurement of pH - Definition, Standards and Procedures (IUPAC Recommendations 2002), Pure Appl. Chem, Vol 74, No. 11, pp. 2169-2200, 2002

² Y. Ch. Wu, W. F. Koch, R. A. Durst: **Standardization of pH Measurements**, NBS Special Publication 260-53, 1988