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We designed gene panels of various target sizes, ranging from 0.2-22 Mb. Probes were optimized using a proprietary 
algorithm to enable balanced capture of complex regions while at the same time reducing capture of off-target 
sequences. Our long-read hybrid capture protocol1 starts with 200-1000 ng fragmented gDNA that were sheared using 
mechanical fragmentation, i.e. Diagenode Megaruptor or Covaris g-TUBE. After end-repair and a-tailing, truncated Y-
shaped adapters were ligated to adapted gDNA. A pair of 10-bp unique dual indices (UDIs) for sample barcoding are 
added during PCR. 4-8 samples can be pooled in a single tube for overnight hybridization. The post-capture libraries 
then undergo SMRTbell library preparation using SMRTbell® prep kit 3.0 and sequencing on PacBio Sequel IIe with a 
30-hour movie time. Depending on target size, up to 400 samples may be multiplexed and sequenced in one SMRT 
Cell with HiFi read length of 5-10 kb. 

24 GeT-RM Coriell samples were sequenced on 1 SMRT Cell 8M on the Sequel IIe system. Samples had on average 150k HiFi reads, 
with a mean read length of ~5.3 kb. Only 2% of duplicates were removed from downstream analysis. Across all targets, a mean target 
coverage of 190x was achieved. Across all samples, 96% of target regions exceeded 20x coverage and 93% of target regions 
exceeded 30x coverage.

The repetitive nature and polymorphic complexity of 389 medically relevant genes poses a challenge for their accurate analysis in a clinical 
setting, but ~70% can be resolved over HiFi assemblies2. This panel provides full gene coverage for 389 difficult-to-call genes, including 
many genes in “NGS dead zone” that are difficult to sequence or map with short-reads3,4. These genes are reported to impact a range of 
diseases including cardiovascular, neuropathies, immunodeficiencies, vision related diseases, also included are cancer driver genes (e.g. 
PTEN).

Targeted resequencing allows for high-resolution characterization of gene regions at a scale and cost that is more 
accessible than whole genome sequencing. While long-read PacBio HiFi sequencing has been shown to accurately 
and comprehensively interrogate complex clinically actionable loci, studies have been primarily focused on single 
genes using PCR amplicon-based methods. Here we describe a method to leverage Twist Bioscience target 
enrichment workflow for gene panels sequenced with HiFi reads. This poster presents the content and the 
performance of 2 alliance panels - a 50-gene pharmacogenomics panel and a nearly 400-gene panel of challenging, 
medically relevant “dark genes” - developed in collaboration with leading institutions.

Pharmacogenes, including HLA genes and CYP2D6, are notoriously difficult to genotype via array or via short-read 
sequencing as they tend to have low sequence complexity and/or highly homologous pseudogenes. CYP2D6 is also 
subject to common partial- or whole-gene duplications and rearrangements. We set forth to develop a 50-gene 
pharmacogenomics panel. In addition to the nuclear content, the full mitochondrial genome is covered to enable 
simultaneous detection of herteroplasmy. 
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Coverage of targeted regions (top track) showed great uniformity with no gaps, unlike short-read WGS data (bottom track) exhibited 
gaps and variable coverage. 

* Short-read WGS PE250 https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/novoalign_bams/ 
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A4GALT, ABCG8, ABO, ABR, ADAMTS10, ADAMTSL2, AFP, AGL, AGRN, ALOXE3, ANKRD11, ANO7, APOBEC1, APOBEC3H, APOC1, APOC2, APOC4, 
ARHGEF10, ASIP, ATPAF2, AXIN1, B3GAT3, BAX, BFSP2, BLOC1S3, BRAF, BSG, BTRC, C1R, C3, CABIN1, CALR3, CANT1, CASP10, CBR3, CBS, CCL3L1, 
CD247, CD320, CD4, CD55, CDH15, CDH17, CEL, CFC1, CFC1B, CFD, CFHR1, CFHR3, CHL1, CHMP1A, CHRNA4, CLCN7, CLIP2, CNR2, COL18A1, 
COL6A1, COL6A2, COX14, COX6B1, CR1, CREB3L3, CRYAA, CTDP1, CYB5R3, CYP2D6, CYP2G1P, CYP4F12, CYP4F3, D2HGDH, DAXX, DAZL, DCLRE1C, 
DEAF1, DGCR6, DIP2C, DLGAP2, DMPK, DNMT3L, DOK7, DPP6, DPY19L2, DRD4, DSPP, DUX4, DUX4L1, ECHS1, EEF1A2, EHMT1, EIF2B5, EIF4E, ELANE, 
ENO3, ESPN, ESRRA, ETFB, ETHE1, EXTL2, F7, FAM20C, FAT1, FCGR1A, FCGR2B, FCGR3A, FGF3, FGFRL1, FKBP8, FLAD1, FLG, FLT4, FOXN1, FSCN2, 
FTCD, FUT1, FUT3, FXN, G6PC3, GAK, GALNT9, GALR1, GALT, GBA, GCGR, GCSH, GDF3, GIP, GIPC3, GNPTG, GOLGA3, GP1BA, GP6, GPI, GPIHBP1, 
GRIN1, GRK1, GSTM1, GTF2I, GTF2IRD2, GUSB, GYPA, GYPB, GYPE, H19, HBG1, HBM, HCN2, HCN3, HES7, HLA-B, HLA-DQB1, HLA-DRB1, HMGCL, 
HMX1, HNF1A, HOMER2, HOXB8, HPD, HSD11B2, HYAL1, HYDIN, IFITM3, IFNL3, IGHA1, IGHG1, IGHG2, IGHM, IGHV3-21, IGKC, IGKV1-5, IKBKB, IKZF1, 
IMPA1, INPP5D, INPP5E, INSL3, INSR, JAG2, KANSL1, KATNAL2, KCNE1, KCNJ18, KCNV2, KDM2B, KIR2DL1, KIR2DL3, KIR3DL1, KISS1, KISS1R, KLF11, 
KLF14, KLK4, KMT2C, KNG1, KRTAP1-1, LAMB1, LBR, LCE3B, LHFPL5, LIPN, LIX1, LMF1, LMNB2, LPA, LRIG2, LRPAP1, LZTFL1, MAFA, MAN1B1, 
MAP2K3, MARVELD2, MASP2, MBOAT7, MC1R, MDK, MEST, MLC1, MLPH, MOGS, MPG, MRC1, MST1R, MUC1, MUC16, MUC3A, MUC4, MUC5B, MUSK, 
MYO9B, MYOT, MYT1, NACA, NAIP, NAPRT, NBEAP1, NCF1, NCF1C, NCR3, NDUFA6, NDUFAF1, NDUFB1, NDUFV3, NFKBIL1, NLRP12, NLRP2, NLRP7, 
NOD1, NOTCH2, NPM1, NPPA, NSMF, NUTM2B, NUTM2D, OCLN, OPRL1, OR12D2, OR4F5, OR51A2, ORC6, P2RX2, P2RX5, PADI4, PAPSS2, PCBP1, 
PCCB, PCDHA10, PCMT1, PDE4DIP, PDE6B, PDLIM3, PDPK1, PDSS1, PEX5, PGAM5, PHKG2, PIGV, PKD1, PKN3, PLA2G10, PLTP, PMS2, PNKP, POLG2, 
PPIA, PPIP5K1, PRG4, PRKCG, PRODH, PROZ, PRSS2, PSPH, PTEN, PTK6, PTPRC, PTPRN2, PTPRQ, PXDN, RFX2, RGPD3, RHCE, RHOA, RNF212, 
RNF213, RPIA, RPL22, RPN1, RPS17, SAR1B, SBDS, SBK3, SDHA, SEC63, SEMG1, SERPINF2, SH2B1, SHANK2, SHANK3, SIGLEC16, SIRT3, SLC17A5, 
SLC22A1, SLC22A12, SLC26A9, SLC27A4, SLC27A5, SLC29A4, SLC5A11, SLC6A18, SLC6A3, SMG1, SMN1, SMN2, SMOC2, SNORD64, SNTG2, 
SOHLH1, SPATA31C1, SPI1, SPRN, SRGAP2, SRR, SSTR5, STK11, STXBP2, SULT1A1, SUZ12, TAPBP, TAS2R45, TAS2R46, TBXA2R, TCF3, TERT, TFPT, 
THBS2, TJP2, TM4SF19, TMC6, TMEM114, TNNI3, TNNT1, TNNT3, TPCN2, TPO, TRAPPC10, TRBV9, TRMT1, TRPM4, TTC37, TTLL1, TUBGCP6, TWIST2, 
TYK2, TYMS, U2AF1, UGT2A1, UGT2A2, UGT2B17, UGT2B28, UNKL, USP8, UVSSA, VANGL1, VKORC1, VPS53, ZAN, ZNF141, ZNF407, ZNF419, ZNF469, 
ZNF479
4 Coriell samples were sequenced on 1 SMRT Cell 8M on the Sequel IIe system. Samples had on average 893k HiFi reads, with a mean read 
length of ~5.2 kb. Only 3% of duplicates were removed from downstream analysis. Across all targets, a mean target coverage of 75x was 
achieved. Across all samples, 93% of target regions exceeded 10x coverage and 90% of target regions exceeded 20x coverage.
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We demonstrate that our long-read capture method efficiently enables comprehensive coverage of gene targets using 
Coriell samples run with multiple gene panels of varying sizes, two of which we highlight here include complex regions 
like CYP2D6, HLA, SMN1, and LPA. This long-read hybrid capture protocol can be utilized with Twist custom or fixed 
gene panels to efficiently capture genes of interest using long-read sequencing. Optional secondary panels (spike-ins) 
can also be easily added during hybridization for additional content. The demonstrated method allows for scalable and 
cost-efficient hybrid capture with long read lengths, minimizing coverage bias, and maximizing accuracy to fully capture 
all variant types. This includes structural variation and haplotype phasing information which are inaccessible to short-
read and Sanger sequencing.
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